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1 Introduction

This seminar aims to create a research forum on algorithms and theory of computer science,
and to train students in skills which are necessary for writing a thesis: understanding a sci-
entific paper, extracting topics and good research questions from the paper and transmitting
topics to a group in a way that enables discussion. It is possible, and even recommended, to
extend one of the seminar’s topics into a thesis supervised by one of the seminar’s instructors.

Credits: 3 graduate credits in computer science

Prerequisites: At least 12 credits in graduate courses with an average of at least 85.
Enrollment is subject to the written approval of the faculty member responsible for seminars.
Undergraduate degree in computer science, and specifically the courses Data Structures,
Algorithms, and a course in computability and complexity.

Requirements: Attending at least 80% of the weakly sessions, presenting a topic to the
group for discussion, and writing a short (3-5 pages) report on the topic presented.

Grading: Grades will be calculated according to the formula

0.5× (Presentation) + 0.3× (Written report) + 0.2× (Attendance & Participation) .

The topics offered by the instructors are presented in the following sections. A student
may choose a topic which does not appear in this list, provided that one of the instructors
is willing to supervise a work on this topic.

2 Approximation Algorithms

Many of fundamental optimization problems are NP-hard. Such problems are unlikely to
admit a polynomial time algorithm. Even worse, there are problems for which one can prove
that no polynomial time algorithm exists.

A natural approach to handle such problems is to design approximation algorithms that
run in polynomial time and find an “approximately optimal” feasible solution. We say that a
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polynomial time algorithm A for an optimization problem Π is a ρ-approximation algorithm
for Π if for any instance I of Π:

A(I)

OPT (I)
≤ ρ if Π is a minimization problem.

A(I)

OPT (I)
≥ ρ if Π is a maximization problem.

Here OPT (I) denotes the optimal value of I, and A(I) the value that the algorithm produces
on I.

2.1 Network Design Problems

In network design problems we are given a directed/undirected graph G = (V,E) with non-
negative edge (or node) weights. The goal is to compute a minimum (or maximum) weight
subgraph G′ of G that satisfies some prescribed property. Two fundamental types of network
design problems are “connectivity problems” and “degree problems”.

Connectivity network design. [Zeev] Here we are given pairwise connectivity demands
ruv for every pair u, v of nodes, and G′ should contain ruv edge/node disjoint u, v paths for
every pair u, v of nodes. The simplest example is the Shortest Path problem, where rst = 1 for
a single pair s, t ∈ V and ruv = 0 otherwise. This problem can be solved in polynomial time,
for both directed and undirected graphs. Additional famous classic examples of connectivity
network design problems with 0, 1 demands are summarized in the following table:

Problem Demands Approximability

Minimum Spanning Tree ruv = 1 for all u, v ∈ V in P
Steiner Tree ruv = 1 or all u, v ∈ U ⊆ V ln 4 + ε
Steiner Forest general 0, 1 demands 2

Minimum Arborescence rsv = 1 for all v ∈ V − s in P
Strongly Connected Subgraph ruv = 1 for all u, v ∈ V 2

Directed Steiner Tree rsv = 1 for all v ∈ U ⊆ V − s O
(
`3n2/`

)
in nO(`) time

Directed Steiner Forest general 0, 1 demands n2/3+ε

Table 1: Known approximability of connectivity network design problems with 0, 1 demands.
The first 3 problems are on undirected graphs, the last 4 are on directed graphs.

The problems in the table are examples of low connectivity network design problems.
Among these problems a central open question is the approximability of the Directed Steiner
Tree problem. Surveys (to be updated soon) on high connectivity network design problems
can be found at:

• http://www.openu.ac.il/home/nutov/survey-connectivity.pdf

• http://www.openu.ac.il/home/nutov/Survivable-Network.pdf
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Degree network design. [Zeev] Here we are given degree lower bound av and/or upper
bound bv for every node v, and G′ should contain at least av and at most bv edges incident
to every node v. Classic examples are the Minimum Edge Cover problem (av = 1 for every
v ∈ V ) and the Maximum Matching problem (bv = 1 for every v ∈ V ).

Sometimes one may consider imposing both connectivity and degree constraints. For
example, in the Degree Bounded Minimum Spanning Tree problem, we seek a minimum weight
spanning tree such that the degree of every node v is at most bv. For this problem, even
checking whether there exists a feasible solution is NP-complete (e.g., if bv = 2 for all v ∈ V
then the problem has a feasible solution if and only if G has a Hamiltonian path). Thus in
this case one considers bi-criteria approximation algorithms, where the degree constraints are
relaxed—the algorithm returns a solution with degrees at most αbv + β whose weight is at
most ρ times the optimal for the original degrees. Here is a book and a paper summarizing
leading techniques in this area of research:

• https://cs.uwaterloo.ca/~lapchi/papers/iterative.pdf

• https://cs.uwaterloo.ca/~lapchi/papers/metric.pdf

Activation problems and wireless network design. [Zeev] In wireless network design
problems a more general measure of a solution weight is often used. Two stations (nodes)
can communicate with each other (can be connected by an edge) only if their transmissin
range is large enough. However, larger transmission range invokes a larger energy/power
consumption. Thus we need to assign an energy level to each station (node) such that the
resulting communication network satisfies some prescribed connectivity/degree requirements.
The goal is to minimize the total energy consumption.

More formally, we are given an activating function fuv(xu, xv) : R×R→ {0, 1} for every
edge uv. An edge uv is activated (included in the solution graph G′) if fuv(xu, xv) = 1. Our
goal is to assign a “weight” xv to each node v such that the activated graph satisfies the
required properties, and the total weight

∑
v∈V xv is minimized. This framework includes the

node weighted problems, with activating functions fuv(xu, xv) = 1 if xu ≥ wu and xv ≥ wv
and fuv(xu, xv) = 0 otherwise, where wv is the weight of a node v. Here are some papers in
this research area (a survey is to appear soon):

• https://users.cs.duke.edu/ debmalya/papers/soda11-wireless.pdf

• http://www.openu.ac.il/home/nutov/NA.pdf

• http://www.openu.ac.il/home/nutov/MP-EM.pdf

A particular case of activation problems in a geometric setting is to add a minimum
number of (identical) transmitters such that the resulting communication network has some
desired properties. In this type of problems we are givem a metric space (M,d) with a set
R ⊆M of terminals. The goal is to find a minimum size set S ⊆M of additional points such
that the unit-disk graph of V = R∪S that has node set V and edge set E = {uv : d(u, v) ≤ 1}
has the desired property (e.g., is connected). Some papers that consider these problems:

• http://www.openu.ac.il/home/nutov/MSP-WAOA.pdf

• http://www.openu.ac.il/home/nutov/MSP.pdf
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Connectivity and domination combined. [Zeev] A subset S of nodes is an m-
dominating set in a graph G = (V,E) if every v ∈ V \ S has at least m neighbors in
S; S is a k-connected m-dominating set if S is an m-dominating set and the subgraph
G[S] induced by S is k-connected, namely G[S] contains k internally disjoint uv-paths for
all u, v ∈ S. In the k-Connected m-Dominating Set problem the goal is to find a min-
imum weight k-connected m-dominating set in a node weighted graph. Several algorithms
are known for the case m ≥ k, see:

• https://arxiv.org/abs/1511.09156

• https://arxiv.org/abs/1508.05515

• https://arxiv.org/abs/1608.07634

2.2 Submodular Optimization

In classical combinatorial optimization problems the objective function is usually linear. In
other words, every element has a weight, and we want to find a maximum or minimum
weight set satisfying some constraint. For example, in the maximum weight spanning tree
problem the objective is to find a maximum weight set of edges containing no cycles, and
in the minimum (s, t)-cut problem the objective is to find a minimum weight set of edges
whose removal disconnects the vertices s and t.

Linear objective functions are quite limited, and often cannot capture real world scenar-
ios. Thus, interest has arisen in studying combinatorial optimization problems with more
general objective functions. One important class of such functions is the class of submodular
functions, which are functions that have the property of economy of scale (“the whole is less
than its part”). Combinatorial optimization problems with submodular objective functions
found many applications in fields such as machine learning and algorithmic game theory.

Submodular welfare. [Moran] Consider a bidder in an auction. The utility function
of the bidder is a function that given a set of items returns the amount of happiness that
the bidder would get if he won these items in the auction (or, equivalently, the amount of
money he is willing to pay for winning them). In many auctions, such as spectrum auctions,
the utility functions of the bidders are naturally submodular, which has motivated the study
of auctions with this property from various points of view. The following papers study the
computational aspect of auctions involving bidders with submodular utility functions.

• http://thibaut.horel.org/submodularity/papers/vondrak2008.pdf

• http://theory.stanford.edu/~jvondrak/data/submod-improve-ToC.pdf

• https://arxiv.org/pdf/1204.1025v2.pdf
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Unconstrained submodular maximization. [Moran] Perhaps the most basic sub-
modular maximization problem asks to maximize a submodular function subject to no con-
straints. In other words, given a submodular function, our objective is to find an arbitrary
set maximizing the function. Quite surprisingly, even this simple problem has a rich research
history, and is still not fully understood.

• http://researcher.watson.ibm.com/researcher/files/us-jvondrak/

submod-max-SICOMP.pdf

• http://openu.ac.il/Personal sites/moran-feldman/publications/

SICOMP2015.pdf

• http://arxiv.org/pdf/1508.02157v1.pdf

The multilinear relaxation. [Moran] A common approach in the design of approxima-
tion algorithms is to solve a relaxation of the problem (such as a linear program), and then
round the resulting solution. The multilinear relaxation is a relaxation which is often useful
in submodular maximization problems. Unlike linear programs, the multilinear relaxation
cannot be solved optimally. Instead, various algorithms have been suggested for solving it
approximately.

• http://chekuri.cs.illinois.edu/papers/submod_max_journal.pdf

• http://arxiv.org/pdf/1105.4593v5.pdf

• http://openu.ac.il/Personal sites/moran-feldman/publications/

FOCS2011.pdf

Hardness results. [Moran] Most hardness (impossibility) results in computer science
are based on assumptions such as P 6= NP . However, in submodular optimization it is
often possible to prove unconditional hardness results that are not based on any unproved
assumptions.

• http://www.gagangoel.com/papers/submodular_focs09.pdf (except for the multi-
agent case)

• http://researcher.watson.ibm.com/researcher/files/us-jvondrak/

submod-max-SICOMP.pdf (sections 1 and 4.2)

• http://researcher.watson.ibm.com/researcher/files/us-jvondrak/

submod-symmetry-SICOMP.pdf

• https://sites.google.com/site/dobzin/papers/

querytocc.pdf?attredirects=0
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2.3 Other Topics in Approximation Algorithms

Higher order Cheeger inequalities. [Manor] Cheeger inequality for graphs connects
the second eigenvalue of the graph to its sparsest cut. In recent years, “higher order Cheeger
inequalities” were developed. These inequalities connect the k-th eigenvalue with sparse
partition of the graph to k parts.

• https://lucatrevisan.wordpress.com/2016/01/31/

cs294-lecture-1-introduction/

k-set packing. [Moran] In the k-Set Packing problem we are given a collection of
weighted sets, each of size k. The objective is to find a maximum weight sub-collection
of mutually disjoint sets. k-Set Packing generalizes important problems such as Set Packing
and k-Dimensional Maximum Matching.

• http://opal.openu.ac.il/pluginfile.php/6368327/mod resource/content/1/
clawFreeGraph.pdf

• http://oai.cwi.nl/oai/asset/10065/10065D.pdf

• http://arxiv.org/pdf/1302.4347v1.pdf

Assignment problems. [Zeev] In assignment problems we are given two sets I, J and
assignment weights w(i, j). An assignment of I to J is a function f : I ′ −→ J where I ′ ⊆ I;
we say that f is a full assignment if I ′ = I. Given weights {w(i, j) : i ∈ I, j ∈ J}, the value
(weight) of an assignment f is

∑
i∈I′ w(i, f(i)).

The simplest problem in this setting is called the Minimum Assignment Problem, where we
want to find a full assignment (to assign all items) by minimum weight. In the maximization
version, we seek to maximize the weight and the assignment may not be full. These two
Assignment Problems model many real life situations, e.g., I can be a set of agents and J
a set jobs, where assigning agent i to perform any job j incurrs cost w(i, j). It is required
to perform all tasks by assigning exactly one agent to each job and exactly one job to each
agent, such that the total cost of the assignment is minimized. Another interpretation is
when I is a set of items and J is a set of bins. We need to match each item to exactly one bin,
while minimizing/maximizing the weight of the assignment. The problem is equivalent to
the Min/Max-Weight Perfect Matching problem in a bipartite graph, and thus can be solved
in polynomial time using max-flow techniques.

Unfortunatly, the Assignment Problem is too specific, and in some real life situations we get
the more complicated Generalized Assignment Problem (GAP). This problem is a generalization
of the assignment problem, in which both items and bins have “size”. Moreover, the size of
each item may vary from one bin to the other. The problem has two versions: Min-GAP and
Max-GAP, and can be stated as follows.
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Max/Min Generalized Assignment Problem (Max/Min-GAP)
Instance: Set I of items and a set J of bins. Each bin j ∈ J has capacity c(j), and each
item i ∈ I has in bin j size s(i, j) and weight w(i, j).
Objective: Find a min/max weight assignment f : I → J that obeys capacity constraints∑

f(i)=j

s(i, j) ≤ c(j) ∀j ∈ J .

In the minimization version of the problem the assignment f is required to be full.

The following problems are particular cases:

• Assignment Problem: The size of each item is 1 and the capacity of each bin is 1.

• Knapsack: This is a particular case of Max-GAP where there is only one bin.

• Multi-Knapsack: This is a particular case of Max-GAP where any item can be packed
into any bin, and both the weight and the item size are fixed across the bins.

While the Assignment Problem can be solved in polynomial time, both Max-GAP and Min-
GAP are NP-hard. Thus approximation algorithms are of interest. Here are some relevent
papers:

• http://www.openu.ac.il/home/nutov/gap.pdf

• http://repository.upenn.edu/cgi/viewcontent.cgi?article=1255&

context=cis papers

• http://ediss.uni-goettingen.de/bitstream/handle/11858/

00-1735-0000-0022-6016-2/diss.pdf?sequence=1

• http://ai2-s2-pdfs.s3.amazonaws.com/59a1/

f69ef23e41ac5b2e56c4400e627b38f1e302.pdf

• http://theory.stanford.edu/~jvondrak/data/alloc-focs.pdf

3 Online and Secretary Algorithms

Real world algorithms often have to make decisions in uncertain environments. Online
algorithms are one way to model this uncertainty in a theoretical setting. The input for an
online algorithm is revealed in steps, and the algorithm has to make irrevocable decisions
before learning the entire input.

The classical secretary problem is an important online problem defined as follows. An
employer would like to hire a single secretary. For that purpose she interviews n candidate
secretaries in a random order. When interviewing a candidate the employer learns his quality,
and must decide immediately whether to hire or dismiss him. Both decisions are irrevocable,
i.e., the employer cannot fire a secretary that was hired, or hire a secretary that has been

7

http://www.openu.ac.il/home/nutov/gap.pdf
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1255&context=cis_papers
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1255&context=cis_papers
http://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0022-6016-2/diss.pdf?sequence=1
http://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0022-6016-2/diss.pdf?sequence=1
http://ai2-s2-pdfs.s3.amazonaws.com/59a1/f69ef23e41ac5b2e56c4400e627b38f1e302.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/59a1/f69ef23e41ac5b2e56c4400e627b38f1e302.pdf
http://theory.stanford.edu/~jvondrak/data/alloc-focs.pdf


dismissed. The objective of the employer is to hire the best secretary. Quite surprisingly, it
is possible to hire the best secretary with probability 1/e. Many extensions of the secretary
problem have been studied. For example, some works consider an extension allowing the
employer to hire up to k secretaries (for some parameter k). These extensions are interesting
mathematically, and also found many applications in auction design.

Constrained secretary problems. [Moran] Many extensions of the classical secretary
problem have the following general structure. The algorithm can hire multiple secretaries, as
long as the set of hired secretaries obeys a given constraint. The objective of the algorithm
is to hire secretaries of maximum total quality (or value).

• https://www.cs.cornell.edu/~rdk/papers/MultSec.pdf

• http://people.csail.mit.edu/nickle/pubs/knapsackSecretary.pdf

• http://arxiv.org/pdf/0807.1139v1.pdf

Matroid secretary problem. [Moran] The matroid secretary problem is one of the
most studied extensions of the classical secretary problem. Here the set of secretaries that
can be hired must obey a matroid constraint (matroid constraints are a class of constraints
capturing many natural constraints. For example, if the candidate secretaries are edges of
a graph, then a matroid constraint can require that the set of hired secretaries does not
contain a cycle).

• http://theory.epfl.ch/courses/topicstcs/Lecture62015.pdf

• https://www.cs.cornell.edu/~rdk/papers/matsec.pdf (sections 1, 2 and 3)

• http://arxiv.org/pdf/1404.4473v2.pdf

4 Distributed Algorithms

Distributed algorithms are invoked by a set of processors in a distributed system in order
to perform common tasks. We will focus on distributed algorithms for communication net-
works. In this setting a network is modeled by a graph whose vertices host processors that
communicate over the edges. The goal is to solve certain graph-theoretic tasks (coloring,
maximal matching, independent set). The network graph is the input. Computation pro-
ceeds in parallel by all vertices, and eventually each vertex has to obtain its part in the
solution (e.g., its color). The union of all vertex answers must be a correct global solution,
and the number of communication rounds should be as small as possible, usually significantly
smaller than the graph diameter.
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Symmetry-breaking distributed algorithms. [Leonid]

• http://www.cs.huji.ac.il/~nati/PAPERS/locality_dist_graph_algs.pdf

• http://www14.in.tum.de/personen/scheideler/papers/coloring.pdf

• http://www.cs.bgu.ac.il/~elkinm/arb_mis.pdf

• http://www.brics.dk/RS/97/38/BRICS-RS-97-38.pdf

5 Big Data

Semi-streaming algorithms for graph problems. [Moran] Processing very large
graphs, such as the graphs modeling the links between websites on the Internet or people
on Facebook, is very difficult. Classical algorithms are too slow to handle such large graphs,
and in extreme cases it is difficult even to store the graph. Semi-streaming algorithms are
one way to tackle these difficulties. A semi-streaming algorithm for a graph problem tries
to solve the problem using a memory which is roughly proportional to the number of nodes
in the graph. As this amount of memory is usually too small even for storing the graph,
the algorithm receives the input graph edge by edge. After viewing each edge the algorithm
is free to make arbitrary calculations, as long as the memory restriction is obeyed (i.e., the
algorithm cannot “remember” all the edges it has viewed).

• http://www.cs.yale.edu/homes/jf/FKMSZ1.pdf

• http://drops.dagstuhl.de/opus/volltexte/2014/4690/pdf/7.pdf

• https://people.cs.umass.edu/~mcgregor/papers/13-esa.pdf

Dynamic algorithms. [Leonid] Various networks need to be modeled by graphs that
change rapidly: wireless networks, mobile networks, unreliable networks in which edges
appear and disappear, etc. Even if we had computed a solution for a certain graph, once
it changes, the solution may become improper. Consequently, we must come up with an
update algorithm that changes the solution accordingly. A dynamic algorithm describes
what should be done after each change in order to preserve the correctness of the solution.
We will consider both centralized and distributed algorithms.

• http://theory.stanford.edu/~virgi/cs267/papers/baswanamatch.pdf

• http://www.cs.bgu.ac.il/~shayso/Papers/STOC13NS.pdf

• http://opal.openu.ac.il/pluginfile.php/6171043/mod resource/content/1/

deterministicColoring.pdf
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Local computation algorithms. [Leonid] In the occasion of very large inputs, it is
desirable to process only a small fraction of the input and still get a correct solution. To
this end, sublinear time algorithms turn out to be very helpful. In particular, Local Compu-
tation Algorithms perform a constant number of operations. We will investigate how these
(apparently limited) algorithms can be used to solve quite complicated problems.

• http://www.tau.ac.il/~shaivar1/LLL4ics.pdf

• http://arxiv.org/pdf/1502.04022v1.pdf

• http://arxiv.org/abs/1402.3796

• http://www.eecs.berkeley.edu/~aviad/ICALP_12_MRVX.pdf

6 Algorithmic Game Theory

Algorithmic game theory studies problems that are on the borderline between game theory
and computer science. This is a very diverse field, encompassing many kinds of problems.
For example, in many settings the information about the input for an algorithm is distributed
among multiple self-interested agents. To learn its input, an algorithms for these settings
(usually called “mechanism”) has to solicit the agents to truthfully report their information.
This can be done, for example, by guaranteeing that a truthful report by an agent maximizes
the chance that the agent’s favorite solution is outputted by the mechanism.

Mechanism design without money. [Moran] Many mechanisms use monetary pay-
ment to incentivize agents to report truthfully their information. However monetary pay-
ments are problematic in many settings. For example, it is often illegal to have monetary
payments in settings involving organ donation. This has led to the study of mechanisms
that do not involve money.

• http://ie.technion.ac.il/~moshet/facility.pdf

• http://arxiv.org/pdf/0910.4699v1.pdf

• http://web.stanford.edu/~iashlagi/papers/mixnmatchCamera.pdf

Sequential auctions. [Moran] In sequential auctions clients arrive one after the other.
For each arriving client the auctioneer have to present a “take it or leave it” price. The
client then either buys an item (or service) from the auctioneer, or refuses to buy at the
given price. This kind of auction can model, for example, the behavior of clients in an online
flights selling service (such as Expedia). Each client asks for a price for a given flight, and
then can either book the flight at the given price, or leave the site.

• http://www.eecs.harvard.edu/~parkes/cs286r/spring07/papers/myerson.pdf

• http://arxiv.org/pdf/0907.2435.pdf
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http://www.tau.ac.il/~shaivar1/LLL4ics.pdf
http://arxiv.org/pdf/1502.04022v1.pdf
http://arxiv.org/abs/1402.3796
http://www.eecs.berkeley.edu/~aviad/ICALP_12_MRVX.pdf
http://ie.technion.ac.il/~moshet/facility.pdf
http://arxiv.org/pdf/0910.4699v1.pdf
http://web.stanford.edu/~iashlagi/papers/mixnmatchCamera.pdf
http://www.eecs.harvard.edu/~parkes/cs286r/spring07/papers/myerson.pdf
http://arxiv.org/pdf/0907.2435.pdf


7 Metric Geometry

Dvoretzky-type theorems for metric spaces. [Manor] Dovertzky-type theorems for
metric spaces states that any metric space contains relatively large subspace that is approx-
imately “simple”. It has applications for some metric data-structures and lower bounds on
some online problems.

• http://arxiv.org/pdf/cs/0511084.pdf

• http://arxiv.org/pdf/1106.0879.pdf

• http://arxiv.org/pdf/1112.3416.pdf
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